[image: C:\Users\jorg.rademaker\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Logo 400x148.png]
Diagnostics Integration Module Guidelines

So you have created a new integration module. That is awesome! What should we check before incorporating this module into the Diagnostics portal?
Contents
Criteria	2
Introduction	2
Structure	2
Example	2
Code style	3
Coding guidelines	3
Testing	3

[bookmark: _Toc509837786]Criteria
[bookmark: _Toc509837787]Introduction
An integration module is a way to define Diagnostics custom functions through Magik code. These custom functions will trigger Diagnostics event creation each time a specified Magik method is run. The integration module is used as a container to group custom function definitions that apply to functionality defined in the same Smallworld module (core or customer module). Diagnostics only loads an integration module if the targeted Smallworld module is present in the image. This simplifies image composition and avoids builds errors. In order for this to work, the creator of the integration module must specify the name of the Smallworld module in which the targeted exemplars are defined. This module is called the integration target.
[bookmark: _Toc509837788]Structure
An integration module is just another Smallworld module. It is defined in a folder and this folder contains a module.def, source, and resources.
Check the following things before submitting your integration module:
1. An integration module may define multiple custom functions, but all of these custom functions must target exemplars from the same Smallworld module. Check that the exemplars for which you have defined a custom function all reside in the same Smallworld module. You can do this by asking my_target_examplar.module_name on the prompt.
2. The name of the folder in which the integration module is defined must match exactly the targeted module name. This is how Diagnostics can determine to which Smallworld module this integration module applies. *
3. The module.def must specify a dependency on the diagnostics_tracker module (version 1).
4. The name of the module (in module.def) must be unique. It should have the format diagnostics_abc_integration, where abc can be anything. Valid examples are: diagnostics_merge_integration and diagnostics_roos_sync_manager_src_integration.
5. In your resources\base\data folder, place a copy of the dashboard XML your created in Splunk.
* From Diagnostics 1.5 onwards, it is no longer required that the folder name of your integration module matches your integration target. Instead, you can list your integration target as an additional dependency in your integration module's module.def. If you want to ensure backwards compatibility with Diagnostics 1.4, you should still define the integration target in the folder name.
[bookmark: _Toc509837789]Example
The following is just an example to clarify the above.
1. The custom function targets method database_view.merge(). This is defined in the register.magik. The integration target is ds_src (because database_view.module_name is ds_src).
2. The name of the folder in which the integration module resides is ds_src (because ds_src is the integration target).
3. The module.def contains 1 required module: diagnostics_tracker 1
4. The name of the integration module is diagnostics_merge_integration (in module.def).
5. There is a file called merge_activity.xml in ds_src\resources\base\data.
The complete ds_src\module.def looks as follows:
diagnostics_merge_integration 1

description
 Provides integration to generate Diagnostics events for Merge behaviour
end

requires
 diagnostics_tracker 1
end
[bookmark: _Toc509837790]Code style
Please adhere to the following styling guidelines.
1. Above all your Magik files, include a header section where you specify the purpose, author, and creation date of the file.
2. Specify a package declaration in each Magik file.
3. Include a pragma for your defined methods.
4. Make sure your defined before and after methods do not already exist on the targeted exemplar. For example defining database_view.diagnostics_before_merge() can be assumed to be safe, but database_view.log() might already exist.
5. In your methods, include a comment stating the purpose, author, and creation date of the method.
6. Code should be self-explanatory. If not, add comments.
7. Do not include any (business) sensitive information in your code. After all your integration module will be shared :)
[bookmark: _Toc509837791]Coding guidelines
The following should make sure that your code runs smoothly.
1. DO NOT CALL ANY METHODS THAT CHANGE THE STATE OF THE APPLICATION. For example querying some_queue.empty? is fine, but assigning a value to a slot is not. We are monitoring the application, so do not be intrusive.
2. Be defensive in your before and after methods. Be prepared to handle unset values. If you forget to, your before or after method will raise an error and no before or after value is included in the event.
3. Avoid calling methods that (potentially) take a long time to execute. This will delay the application for the user.
[bookmark: _Toc509837792]Testing
Test your integration module thoroughly before submitting it.
1. Check the dashboard Diagnostics Finetuning for your session ID to see whether you do not get discarded events of type rwa_custom_function. If you do, then your integration module generates more events then Diagnostics can process without impacting the system.
2. In addition your before and after methods do need time to run to gather the information you want. Make sure that these methods are as fast as possible, because this will be inserted in normal production operation. Any delay you incur here will translate directly into a slower application for the user.

[image: C:\Users\jorg.rademaker\AppData\Local\Microsoft\Windows\INetCache\Content.Word\Diagnostics color bar.png]
image1.png
S I AN DD ST s

image2.png

